

Outline

- Engine Basic Background
- Newton's Law
- Gas Turbine Engines
- > Relationships back to Engines that we use.
 - > Classification of internal combustion (IC) engines
 - > Note: IC sometimes stand for Intermittent Combustion
 - > Types of cycles gas turbine, rocket, reciprocating piston gasoline/diesel
- Relative comparison to other engines

Newton's Law

Newton's Law

$$F = \frac{d}{dt}(mV) \qquad F = ma$$

$$F' = ma$$

$$F = \frac{dm}{dt}(V) \quad F = m \frac{dV}{dt}$$

Newton's Law -Engine Guy likes

$$F = \frac{dm}{dt}(V)$$

Generate a large Velocity

Move a lot of Mass

Use of Newton's Law

•Huge m

Huge V

What Happens Inside??

Why? With a global market value of over \$200 billion.

Compression -> Combustion -> Expansion(Exhaust)

Review of thermodynamics

- > Almost everything in Engines can be analyzed with
 - ➤ 1st Law of Thermodynamics (conservation of energy) - "you can't win")
 - ➤ 2nd Law of Thermodynamics "you can't break even")
 - Equation of state (usually ideal gas law) "you can't even choose your poison"
 - Conservation of mass
 - Conservation of momentum

Turbofan (http://www.howstuffworks.com)

Solid / liquid rockets (http://www.howstuffworks.com)

Reciprocating piston engines (gasoline/diesel)

http://www.howstuffworks.com

Premixed vs. non-premixed charge engines

Reference/Background Information

Basic gas turbine cycle (Power Generation)

http://www.asme.org/igti/resources/articles/intro2gta.html

Classification of IC engines

- Internal combustion engines (ICEs) is generally used for vehicle (car, aircraft, etc.) propulsion
- ➤ By definition, ICEs include gas turbines, supersonic propulsion engines, and chemical rockets
- ➤ Definition of internal combustion engine: a heat engine in which the heat source is a combustible mixture that also serves as the working fluid
- > The working fluid in turn is used either to
 - Produce shaft work by pushing on a piston or turbine blade that in turn drives a rotating shaft or
 - Creates a high-momentum fluid that is used directly for propulsive force

What is / is not an ICE?

Why internal combustion engines?

- Alternatives external combustion "steam engine," "Stirling cycle"
- **➤** Heat transfer, gasoline engine
 - \rightarrow Heat transfer per unit area (q/A) = k(dT/dx)
 - > Turbulent mixture inside engine: $k \approx 100 k_{no turbulence} \approx 2.5 W/mK$
 - \rightarrow dT/dx $\approx \Delta T/\Delta x \approx 1500 K / 0.02 m$
 - > q/A \approx 187,500 W/m²
- **>** Combustion: $q/A = ρY_fQ_RS_T = (10 \text{ kg/m}^3) \times 0.067 \times (4.5 \times 10^7 \text{ J/kg}) \times 2 \text{ m/s} = 60.3 \times 10^6 \text{ W/m}^2 321x higher!$
- > CONCLUSION: HEAT TRANSFER IS TOO SLOW!!!
- ➤ That's why 10 Boeing 747 engines ≈ large coal-fueled electric power plant
- k = gas thermal conductivity, T = temperature, x = distance, ρ = density, Y_f = fuel mass fraction, Q_R = fuel heating value, S_T = turbulent flame speed in engine

Why internal combustion engines?

- > Alternatives electric vehicles
 - Why not generate electricity in a large central power plant ($\eta \approx 40\%$), distribute to charge batteries to power electric motors ($\eta \approx 80\%$)?
 - Car battery, lead acid: 100 amp-hours, 12 volts, 20 kg; energy/mass = 100 A * 12 V * 3600 sec / 20 kg = 2 x 10⁵ J/kg
 - ➤ Gasoline (and other hydrocarbons): 4.5 x 10⁷ J/kg
 - > Factor of 225!
 - > Fuel cell systems better, but still nowhere near gasoline
 - "Zero emissions" myth EVs export pollution
 - > Environmental cost of battery materials
 - > Possible advantage: makes smaller, lighter, more streamlined cars acceptable to consumers
 - Eventual conversion of electric vehicles to (hybrid?) gasoline power (>100 miles per gallon)

"Zero emission" electric vehicles

Power Density

Pollution Generation (More Next time)

Why is it so hard to get people to use new technology?

